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Abstract: Charging stations are the basic infrastructure for accommodating the energy needs of electric vehicles (EVs).
Companies are expected to invest in these charging stations by installing them at locations with a dense concentration of
vehicles, such as parking places, commercial centres, and workplaces. In order for investors in EV charging stations to
maximise their profits and mitigate the impact on the power grid, these stations would benefit from coupling with an energy
storage system (ESS). ESS would be used to arbitrage energy and to balance out the time-variant and uncertain EV energy
demand. This study proposes a framework to optimise the offering/bidding strategy of an ensemble of charging stations coupled
with ESS in the day-ahead electricity market. The proposed framework accounts for degradation of the ESS, robust scheduling
against price uncertainty, as well as stochastic energy demand from EVs. The results show the viability of the proposed

framework in providing cost savings to an ensemble of EV charging stations.

1 Introduction

The decarbonisation of the road transport sector is resulting in
rapid adoption of electric vehicles (EVs) and is expected to reach
20 million by the year 2020 [1]. EVs use electricity as an energy
carrier as opposed to fossil fuels; therefore the successful roll-out
of EVs needs to be accompanied by an equally rapid investment in
charging infrastructure. The charging infrastructure implies either
slower AC or faster DC chargers, whose capacity exceeds 120 kW
[2, 3].

EV charging stations (EVCS) are expected to capitalise on
natural concentrations of EVs, such as in parking places,
commercial centres and work places, among others. These EVCS
would have the common objective of serving the uncertain time-
variant energy needs at a minimum cost. If aggregated, the EVCS
could meet the minimum capacity requirements to participate in
day-ahead (DA) electricity markets (e.g. 0.5 MW in CAISO [4]
and 0.1 MW in ERCOT [5]). Furthermore, the aggregated energy
requirements of several of these EVCS could be better predicted,
and an aggregator would be in a better position to participate in DA
markets and minimise the electricity procurement costs. To further
reduce the costs, the aggregator can perform energy arbitrage with
an energy storage system (ESS), which it would manage in
conjunction with the ensemble of EVCSs.

The aggregator bidding/offering strategies in the electricity
markets have been the focus of several research studies. Such
studies include managing an ensemble of individual EVs for
market participation, as explored in [6—11]. These works, however,
consider charging at residential locations, whereas charging at
public locations may provide further benefits. Projects, e.g. [12],
indicate with the public (i.e. workplace and/or commercial) EVCS
infrastructure in place, 1 in 73 people would opt to drive an EV, as
opposed to the national average of 1 in 1400 in the US. Thus,
publicly available EVCS are needed to spur the EV penetration and
attain projected targets. However, proper methods must be
developed in order to manage their operation in an optimal manner.

Several works have studied the operation of public EVCS in
power systems, and these may be split into two categories: (i)
internal management of EVCS and (ii) external operation and
interaction with the power grid. The large majority of the work
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falls into the first category and include works such as [13-15],
among others. In the second category, works exploring the
operation and interaction with the power grid include [16-20].

Specifically, in the second category, optimal sizing and
operation of an ESS for charging stations are studied in [16] such
that energy procurement and ESS operational costs are minimised.
A rule-based control algorithm is developed in [17] that routes
power between the station, grid, ESS, and photovoltaics. In [18], a
scheme is developed that allocates power from the grid plus ESS to
a network of charging stations and also routes EV customers. The
value of ESS coordination with EVCSs for public buses is explored
in [19] while considering the ESS investments and potential cost
savings under retail tariffs. Furthermore, an ESS sizing model is
developed while considering the stochasticity of the demand [21].
These works [16-19, 21], while managing the external operations,
do not consider the cost savings potential of participating in
wholesale electricity markets, the uncertainty of EVCS operations,
and explicitly the ESS degradation costs which may significantly
reduce the revenue potential. On the other hand, the optimal
participation of EVCS parking lots in various demand response
programs is studied in [20] with consideration of the potential cost
savings and EV arrival/departure uncertainty. However, Shafie-
khah et al. [20] do not consider the additional benefits an ESS can
provide in terms of cost and uncertainty mitigation (e.g. in price
arbitrage and EV arrival/departure times). Other related works have
studied the impact of degradation on ESS, such as in [22-24].
However, the calculation of the battery degradation cost must be
linear to (i) be embedded into a linear optimisation framework, and
(i1) be computationally most tractable. The works in [22, 23] do not
utilise linear degradation models and also do not study the ESS role
for EVCS:s.

The EVCSs have not only been considered in theory.
Commercial businesses have developed around this concept to take
advantage of the growing EV penetration. This sector includes
entities that install, e.g. General Electric [25], among others, and
those that both install and manage EVCSs, e.g. ChargePoint [26],
Tesla Motors [27] among others. For entities that manage EVCSs,
their revenue streams are based on the money collected from each
EVs charging needs, and for the case of Tesla Motors, their
charging network is free to use for their EV models. These entities
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Fig. 1 Aggregator's interaction with the EVCSs, electricity market, and power system

would see cost savings if internally aggregating or allowing a third-
party aggregator, to manage the energy procurement task for their
network of EVCSs.

This paper proposes a framework for an aggregator to manage
an ensemble of EVCSs to bid/offer into the wholesale electricity
market with the primary goal of minimising operating costs. The
aggregator, to further reduce its costs, is equipped with an ESS that
acts as a buffer which can provide flexibility to the market bids/
offers, while considering the effect of battery degradation due to
cycling. The aggregator's DA optimisation model incorporates
uncertainty management of market prices, using robust
optimisation (RO), and of aggregated EVCS power demand, using
stochastic optimisation. For cost-effective operation, the aggregator
must effectively manage the uncertainty while considering the
trade-off between potential cost reduction compared to the
degradation of its ESS. The main contributions of this work are

* Aggregator DA optimisation model managing aggregated power
and energy needs of EVCSs based on statistically constructed
demand scenarios.

* Uncertainty modelling of the market price using robust
optimisation and aggregated EVCS demand using stochastic
optimisation.

» Complete ESS model that supplies energy to the grid or to the
EVCSs, if economically justifiable, while considering
degradation costs.

» The realistic framework of an aggregator exploiting its ESS,
power system market, and EVCSs.

The remaining of this paper is organised as follows. Section 2
describes the framework including the perspective of the EVCSs,
and interactions between the markets, power grid, EVCSs, and
ESS. Section 3 describes the aggregator optimisation model.
Section 4 discusses the results and Section 5 concludes the paper.

2 Framework

An aggregator is a profit-seeking business entity who acts as a
mediator between the EVCSs and the wholesale electricity market.
In order to better manage its demand, this entity may or may not
own an ESS; however, in this proposed framework an ESS is
considered to exploit its flexibility. The aggregator with the ESS
acts as an economic transaction buffer between the EVCS and the
grid. Physically within a typical distribution grid, the ESS is
connected and located upstream (i.e. nearby the substation
transformer) with respect to the connection location of all EVCSs.
On the other hand, the aggregator is a virtual entity with only
communication channels to and from the EVCS and ESS. It is
assumed the distribution grid in which all EVCSs operate can
handle the total net load.
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Fig. 1 shows the aggregator's interactions with the different
entities: an ensemble of EVCSs, power system, and electricity
markets. The aggregator coordinates with each EVCS under its
management to obtain their expected charging demand
requirements for the next day. The expected demand of each EVCS
is then used to obtain an expected aggregated demand. The
aggregator performs a DA optimisation to schedule its operation at
the least-cost while exploiting its ESS capabilities. The ESS
charges from the grid in grid-to-battery (G2B) mode when the price
of electricity is low. During the periods of high electricity prices, it
can either inject electricity back into the grid in battery-to-station
(B2S) mode to offset the consumption of the EVCS and thus obtain
cost savings, or inject energy back into the grid in battery-to-grid
(B2G) mode to obtain additional revenue by selling into the
electricity market.

If the aggregator is unable to supply all of the energy needs
from the ESS in B2S, it resorts to the power grid in grid-to-station
(G2S) mode to obtain the shortage. For such a case where there is a
shortage or the aggregator does not own and operate an ESS, it can
still provide cost savings by purchasing the bulk power needs of all
EVCSs in the wholesale market. The aggregator's optimisation
determines the market bids (G2B and G2S services) and offers
(B2G services) as a price-taker in the DA wholesale markets.

2.1 EVCS perspective

Each individual EVCS would need to purchase electricity either
directly from the wholesale market or via a retailer. However, an
EVCS may not meet the minimum energy requirements to
participate in the wholesale market, and at the same time, their
primary objective is to provide charging services to their EV
customers. For these reasons, the role of an aggregator is to
manage an ensemble of EVCSs in order to optimise market
performance and provide energy services in bulk. Therefore, the
aggregator should be reimbursed for its services by the EVCSs.
However, the methodology used to charge for its services is not
within the scope of this work.

Within this framework, each EVCS is assumed to have in place
an internal day-to-day operation for managing each individual EV
customer. An interested reader is advised to refer to [13—15] for
such methods. In this framework, each EVCS must provide to the
aggregator its forecasted demand curve for the following day. Note
that internally, each EVCS may accommodate any pricing structure
to expense individual EV charging and the resulting forecasted
demand would be a by-product of such process. Communication of
the demand curve hides proprietary information, for example, the
number of EVs arriving at the stations, power requirements of EVs,
type of charging protocols used, among others. The major benefit is
that an EVCS is not required to change its internal business/
operating procedures to conform to the aggregator's framework.
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2.2 Eenergy storage system

The ESS, which is owned and operated by the aggregator, is
beneficial when scheduling energy at the DA stage. Without the
ESS, the aggregator has no other option but to blindly follow the
aggregated demand curve. With the ESS at its disposal, however, it
can charge and store energy which is either used to offset
consumption of EVCSs in B2S mode or sell back into the market
in B2G mode. These ESS operations, however, cause battery
degradation [28] and therefore the potential cost savings incurred
must be higher than the cost of degradation. The ESS is expected to
be physically located close to the substation of the distribution
feeder. The benefits of this are twofold: (i) only the distribution
lines connecting the ESS to the grid need to be revamped in order
to allow bi-directional power flow (i.e. providing services in the
wholesale markets requires discharging of energy upstream), and
(i1) since the distribution grid is of radial structure, discharging to
supply EVCSs happens naturally without any changes to the
current topology of the grid.

The installation cost of the ESS might be offset by the different
streams of revenue that could be collected from its operation.
While the primary role of the ESS in this work is to demonstrate its
effectiveness to mitigate power peaks that could be generated by
simultaneous utilisation of the EVCSs; other sources of income
could consider. For instance, in [8], we consider a probabilistic
framework in which an aggregated ensemble of EVs' batteries is
utilised to participate in energy and reserve markets
simultaneously. The proposition value of such approach is high,
and similar features could be adopted in the model presented in this
study. However, this would go beyond the core idea of the co-
locating ESS with FSCs to facilitate the rollout of this type of
charging stations.

The following section discusses the mathematical formulation
of the optimisation model considering the interactions of the
aggregator shown in Fig. 1.

3 Optimisation model
3.1 Aggregator's DA model

In the DA model, the aggregator determines the optimal bidding/
offering strategy in the wholesale -electricity market. The

aggregator determines the amount of energy to sell pi°!' and buy

PP from the market to meet the aggregated EVCS demand D,.
The objective function is formulated as follows:

min At Y7 - (P = pih) (la)

tedg

The buying and selling of energy are priced at the DA market
prices 4, with a timestep of Az. The objective function (la) is
subject to several constraints. The first set of constraints
determines the bidding and offering quantities

pit = pPo e (1b)
P = p 4 p (1)

The aggregator sells energy (pi) by scheduling its ESS to operate
in a B2G mode, (pP?®) while considering battery discharge
efficiency #%¢. On the other hand, the aggregator purchases energy
from the market (p?") to both charges the ESS (p°?®) and directly
supply the power consumption requirements of EVCSs (pS2).

Constraints (1d) and (1e) determine the energy state-of-charge
(SoC) of the ESS. In (1d), the SoC is dependent on its previous
state, the charging power pS?® including the efficiency ;"¢ the
discharging power pP?0, and the amount of power discharged from
the battery to supply the EVCS, pP>S. Constraint (1e) ensures that
SoC does not violate its minimum and maximum limits, and at the

same time is below its rated capacity BCHS.
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soc, = soc;_ | + At(p,GZB - the — pB6 _ p,BZS) vie T (1d)
0 < SoC < soc, < SoC <BC® vie T (1le)

The aggregator obtains forecasts of the power consumption from
each EVCS d, which is then summed to obtain D, i.e. D, = Y.d,.
This aggregated demand must be met by a combination of the ESS

discharging in B2S mode, pP*, and supplies from the grid in G2S

mode, p*S. This is modelled as
P ™+ =D, VieT (1n

Constraints (1g) and (1h) ensure that different services provided by
the ESS are within its minimum and maximum power limits, P™*.
These constraints also disallow B2S and B2G to occur
simultaneously with G2B, where x, € {0, 1} is an auxiliary binary
variable. For example, if x, = 1, B2S and B2G are allowed whereas
G2B is disallowed. This is implemented to ensure the ESS system
performs only charging or discharging, and not both
simultaneously

0 pPS+pPo<P™ ., VieT (1g)
0<pSB<pP™ . (1-x) V€T (1h)

Constraint (11) ensures the total energy in the ESS at the beginning
of the optimisation horizon is replenished by the end, i.e. t = |7|.

$0C;_|7| = SoC™Mt (11)

Lastly, the non-negativity constraints for G2B, B2G, and B2S
powers are considered as
PP 20,

>0, pPS>0 (1j)

3.2 Demand uncertainty

The aggregator obtains demand requirements of each EVCS for the
next operating day, which is then aggregated into D,. However,
each EVCSs demand is prone to uncertainty thus rendering D, to be
uncertain. The main causes are uncertain arrival, departure, and
charging times of EVs at EVCSs. Thus, the aggregator must take
into consideration the effect of such demand uncertainty on its
decision-making process for wholesale market participation. To
hedge against this uncertainty, the technique of stochastic
optimisation [29] is implemented. This technique takes advantage
of the known probability distributions of the uncertain parameters
(i.e. D,). With this, instead of using a single aggregated demand
scenario D, in the optimisation, a set of scenarios & with index s is
considered. In addition, each demand scenario D;, has expected
probability z; to materialise in the real-time (RT). With this
approach, the aggregator obtains the DA bidding/offering schedule
that is optimal with respect to all the demand scenarios considering
the distribution of uncertainty.

Mathematical formulation of the aggregator's DA stochastic
optimisation is as follows:

min At Y 4 (Y = pi + A Y 7 Y A pa
teg SES teET (2)

a
DDA

ses teT
s.t.:

soc, , = socy,; + Af(pTB -

eET

chg _ p,BZG _ p?$5) Vs € S,t (2b)

0 <SoC <soc,, <SoC<BC™ Vses,reT  (2)
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B2S G2S

poS et pPS 4 pr —pli=D;, Vs€S,tE€T  (2d)

0<p <peB+p’ Vses,teT (2¢)
0<pi, <pBBS4pSS vsesreg (2f)
0<pBBS 4+ pBO < P™ ., VsesteT (2g)
s0C, ;7= SoC™ Vse & (2h)
P20, pP=0, plE=0 i)
Constraints  (1b), (1c), (1h), (1j) (29)

The objective function (2a) has two additional terms as compared
to (la). The expected cost of purchasing additional energy in the
RT market for the scenario s is determined based on the power
shortage p;, and the buying price A. Similarly, the expected
revenue from selling surplus energy in the RT market for the
scenario s is determined based on the excess power p;, and selling
price A/. Both of these two terms contain probability 7,
representing the chance of the demand scenario s to materialise in
the RT.

The objective function is subject to the constraints similar to
(1d)—(11), however, with the addition of stochastic scenario index s.
Decision variables that include index s are soc, , and B3 as they
are wait-and-see (i.e. recourse) decisions within the stochastic
framework [29], and are determined after the demand materialises
in the RT [29]. On the other hand, the variables representing G2B
(pS*®), B2G (pP*©), and G2S (p®?) are here-and-now decisions,
i.e. they have the same value regardless of the scenario. The
bidding/offering decisions in the markets, i.e. G2B, B2G, and G2S,
are based on the weighted average values over all scenarios. Slack
variables p;, ps; capture the shortage/excess energy in each
scenario. The final energy balance is expected to be obtained from
the RT market. On the other hand, B2S does not require interaction
with markets and can be controlled by the aggregator as demand
materialises in the RT.

3.3 Market price uncertainty

The aggregator, using its ESS, exploits differences in electricity
prices A, by purchasing energy pP™ when prices are low, and
selling energy pi!! when prices are high. To participate in the DA
market, however, the aggregator forecasts market prices which are
uncertain. Such price uncertainties may cause the aggregator to
incur monetary losses. For example, with forecasted prices 4,, the
aggregator's optimisation model would schedule and consequently
bid into the DA market for large amounts of energy to be procured
during the low-price periods. After the DA market clears, however,
the realisation of specific prices may be higher than forecasted and
thus may leave the aggregator with high monetary losses. To hedge
against such uncertainty in the DA, the RO technique is
implemented [30]. RO is an uncertainty modelling approach
suitable for situations where the range of the uncertainty (e.g. range
of electricity prices) is known, while the distribution of uncertainty
is unknown.

Deviations of the market prices are modelled within the range
[/1}“'", itmax], where A4 =A™+ A4 and A4 is the highest
expected price deviation in the period ¢. To control the level of
protection against uncertainty, the parameter I" is varied from [0, J],
where [J =1tIA4 >0]. With I'=0, no price deviations are
considered and the solution is equivalent to the deterministic case,
i.e. no consideration of uncertainty. On the other hand, if I' = |JI,
the solution is the most conservative since price deviations at all
time periods are considered, i.e. prices at all time periods are equal

to A", This solution is equivalent to the RO model proposed by
Soyster [31]. However, the implemented RO procedure is based on
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[30] and it allows choosing any I' from range [0, /], thus fine-
tuning the level of conservatism.
The RO-based DA model is formulated as follows:

min  Af 2 A;nin . (p})uy _ p?ell) + FRO . ZRO + Z thO (3a)

teg teg
s.t.:
Constraints  (1b) — (1j) (3b)
RO+ RO > Ar- AN - (pFB + pPS) VieT (3c)
Wo>0 vied (3d)
KO>0 (3e)

In comparison to the deterministic DA objective function (1a), the
extended objective function (3a) includes two additional terms
containing variables zR° and yRO used to account for the known
price bounds and parameter I'. This objective is subject to the
original constraints (1b)—(1i) along with constraints (3c)—(3e).
Constraint (3c) defines the worst price deviations that could
materialise at each time period when interacting with the market in
G2B and/or G2S. RO variables z8° and yR© are positive, as
imposed in constraints (3d) and (3e). This RO model will choose
the worst I' time periods with full price deviation in order to
deteriorate the objective function value the most. An interested
reader is encouraged to see [30] for details on how to obtain the
robust counterpart.

3.4 Battery degradation management

As the battery cells within the ESS charge and discharge, they lose
a fraction of their capacity, which is often referred to as battery
degradation [28]. The aggregator incurs all costs related to the ESS
and thus must consider costs of degradation in its DA optimisation.
Degradation management determines the optimal trade-off between
revenue collected from services, i.e. B2G and B2S, and the cost of
cycling the battery. Without degradation management, the ESS
would be exploited to obtain the maximum revenue; however, it
would experience excessive degradation that is not economically
justified.

Other works have studied the impact of degradation on ESS,
such as in [22-24]. However, in this work, we have assumed two
degradation characteristics, one of them linear and sensitive only to
the energy utilised per cycle, and the other one non-linear and
dependent not only on the energy utilised per cycle but also to the
depth-of-discharge at the beginning and the end of the cycle. The
first model can be easily embedded into the proposed model since
it is linear and it does not increase the nature of the mathematical
model. The other model is included by means of piecewise linear
approximations, which introduce additional binary variables and
thus increase the computational burden. Other works propose more
elaborate degradation characteristics that could eventually be
included in the proposed model [22, 23]. However, such models
are mainly non-linear and would not only increase the
computational burden but also dilute the main message of the
proposed method, which revolves around the utilisation of ESS for
optimal operation of EVCS.

The formulation of the aggregator model that considers linear
battery degradation characteristic is as follows:

min At Z A (PP = pih +

teg
(4a)
|£|Zre.‘7§06;iegCES .BCES
100l BCES
s.t.:
Constraints  (1b) — (1j) (4b)
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soc®® > soc,_, —soc, Vi€ T (4¢)
soc >0 vied (4d)

The second term in the objective function (4a) represents the
degradation costs, where C™ is the price of the ESS (typically in $/
kWh), which includes the balance-of-system costs, e.g. battery and
labour [32]. In addition, soci® determines the amount of energy
discharged from the battery in the period ¢ and m is a linear
approximation of the battery life as a function of the number of
cycles. The parameter m can be estimated based on datasheets of
battery manufacturers [33]. The objective function is subject to
constraints (1b)—(1i), (4c) and (4d). In (4c), the constraint models
max{0, soc,_, — soc,}, where the amount of energy discharged
from periods 7 — 1 to ¢ is determined. It is assumed the same energy
discharged was charged into the battery in previous time periods in
order to complete one full cycle of degradation [28]. Constraint
(4d) imposes non-negativity on soc2°®.

The other, more detailed battery degradation model is based on
formulation from [28]. This model considers the depth of discharge
(DoD), defined as dod, =1 —soc,. This results in higher
degradation effects for the same amount of discharged energy when
battery DoD is higher. This model is formulated as follows:

min At Y 4 (P = pi)+ Y dod! €™ BCE (s

teg teg
s.t.
Constraints  (1b) — (1j) (5b)
2 X - Wy p = dod, Vte T (5¢)
peEP
Zwa,'p:[), Vte T (5d)
peEP
z Wy p = 1 ViteT (5¢)
peEP
dod®¢ > p—p,_, VieT (50
W, b,
2 bZ
<M (59)
o by_y
P—1
Y b,=1 (5h)
p=1

where M is a p X (p — 1) matrix such that M; ;=1 Vi=j and
i = j+ 1, and 0 otherwise.

Objective function (5a) is penalised by the per unit degradation
dod®, multiplied with prices of ESS, CES, and battery capacity,
BCPS. Constraints (5¢) and (5d) are used to relate the current DoD
with degradation costs (see Fig. 3 in [28] for reference). X, and Y,
are points used to construct a piecewise dependency of degradation
on DoD with P parts, where X, is the DoD coordinate and Y; is the
degradation coordinate. Continuous variable @, , is used to identify
the piecewise linear segment containing a specific dod, value,
while p, is the degradation variable. Linear interpolation of
degradation values on a line segment between two points is
enforced in (5e). Actual cost of degradation d0d§leg is determined in
(51). Constraints (5g) and (5h) are adjacency constraints to enforce
that interpolation is taking place in between the neighbouring
points. This model is based on the degradation modelling
procedure explained in Section 3.3 of [28], while additional
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information on how adjacency constraints operate can be found in
[34].
3.5 Complete DA model

The complete aggregator's DA model that includes EVCSs demand
uncertainty, market price uncertainty, and ESS degradation costs is
formulated as follows:

min Az Y A (M = g

teT
ALY m Y A pa— ALY T Y A pl
seES teT seES teT
6
4+IRO. RO L nyo (6)
teT

Y e s0cE ES ES

+go ™ s — pas ¢ BC

Objective function (6) is subject to constraints (1b), (1c), (1h), (11),
(2b)—(21), (3c)—(3e), and (4c) and (4d) or (5¢)—(5h). Note that in
(4c¢), (4d) and (5¢)—(5h), the stochastic index s is included in SoC
and DoD variables, similar to (2b) and (2c).

3.6 RT operation

The presented model is a top-level long-term economic layer that
in actual implementation needs to be accompanied by a more
detailed control layer. The objective of the control layer is to
follow the trajectory passed on by the economic layer. This
trajectory is represented by the values of soc,, based on the
materialisation of the uncertainty. The control layer needs to model
physics of the ESS and charging stations more accurately than the
economic layer, resulting in increased numerical complexity.
Therefore, its look-ahead horizon needs to be much shorter, not
more than a couple of hours, while the resolution needs be
increased, e.g. 5S-min time steps. In case of a faulty forecast used in
the economic layer, the control layer might not be able to meet the
set-points. In this case, the economic layer would need to re-run
with DA market decisions fixed to provide a new trajectory for the
rest of the day. This would enable the control layer to continue
operating in the feasible area, while the economically inefficient
operation caused by the faulty forecast would be reduced. A similar
concept where the economic layer lies on top of the control layer to
optimise storage operation is proposed in [35]. There are various
control layer operating policies that can be used to follow the
economic layer trajectory, e.g. [36, 37].

4 Case study

The proposed approach is applied to aggregated EVCS demand D,
obtained by implementing the methodology outlined in [38] using
the vehicle data from the National Household Travel Survey
(NHTS) [39]. Other EV datasets, e.g. in [40], may also be used. A
total of 5000 EVs were tracked over 1000 days to obtain daily
charging consumption profiles in the workplace and commercial
(e.g. shopping and restaurants) locations equipped with EVCS. The
EVCSs are assumed to be fast charging stations using Level 3
charging protocol at 40 kW power rating [3]. Fig. 2 shows the
aggregated EVCS charging profiles at workplace (Fig. 2a),
commercial (Fig. 2b), and the sum of these two (Fig. 2¢). In
Figs. 2a—c, the light grey area represents the 50% band (i.e. 0.67 of
the standard deviation from the mean consumption), the red is the
90% band (i.e. 1.645 of the standard deviation from the mean), and
the dark grey is the 100% band, which represents the minimum/
maximum of the data. One thousand EVCS charging demand
profiles are reduced to a set of scenarios with their respective
probabilities z; using the K-medoids scenario reduction technique
[41].

The capacity of the ESS is 1 MWh, however, the available SoC
ranges from 15 to 95% of the rated capacity due to constraints on
the batteries [42]. Charging and discharging power ratings are 500
kW, while the charging/discharging efficiencies are 95%. The
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initial ( = 0) SoC of the ESS is randomised. The ESS price is set
to 300 $/kWh [43, 44] unless otherwise specified. The linear ESS
degradation model is based on lithium iron phosphate batteries
(LiFePO,), while the detailed DoD-dependent model is based on
NCA batteries.

To represent a typical weekday DA market price, the ERCOT
historical data in the period January—March 2016 is used [45]. A
typical price curve that best characterises the dataset is obtained
using the K-medoids approach [41] and is shown in Fig. 3 as ™"

The upper bound prices 4™ used in RO are proportional to A™",

To discourage scheduling of bids/offer in the RT markets under the
stochastic optimisation framework, the buying A and selling A/
prices are assumed to be twice and half the DA typical prices 4",
respectively.

The proposed approach is a mixed-integer linear program
implemented in GAMS 24.2 [46] and solved using IBM CPLEX
[47] on an Intel Xeon 3.10-GHz processor with 16 GB of memory.
The optimality gap is 0.05%.

4.1 Optimal combination of stochastic scenarios and RO
parameters

To minimise its operating cost, the aggregator must determine its
optimal bidding/offering strategy in the DA market. To do so, the
uncertainty of energy prices and EVCS demand must be estimated
using the robustness parameter, I", and the number of scenarios S|
in stochastic optimisation, respectively. To determine the best
combination of parameters that yield the minimal operating cost,
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Monte Carlo (MC) simulations are performed [48]. The DA
schedules are obtained for all discrete RO parameters in
I'=[0, IT1], and stochastic scenarios, IS| =[1,5,10,25,50, 100].
For each combination of IS| and I" yielding a DA schedule, MC
trials are performed to determine the actual cost of operation as the
uncertainty materialises. The number of MC trials is set to
min{ 1000, NM€}, where NMC is the number of trials required to
obtain a 95% confidence of an error <1% [48]. In the MC
simulations, 32 prices and 32 EVCS demand profiles are used
totalling 1024 MC trials.

Fig. 4 shows the normalised cumulative distribution function
(CDF) of the aggregator operating cost for different combinations
of I" and ISI. Cost of each MC trial is normalised over the mean cost
of the deterministic MC trials, i.e. IS| =1 and I' =0. In other
words, normalisation occurs against cost realisations when
uncertainty is not taken into consideration. While all combinations
of IS| and I' are considered, Fig. 4 shows only select combinations
for clarity.

From Fig. 4, the CDF curves to the left of the deterministic
curve yield the lowest operating cost over all MC trials. In all
combinations where IS > 1 and I' > 0, the aggregator achieves
cost savings. However, if only a single scenario, i.e. ISI =1, is
considered with I > 0, specifically the case shown in Fig. 4 where
ISI = 1,T" = 36, the costs are higher than in the deterministic case.
This is caused by the RO, where it increases B2S and decreases
B2G energy to protect against unforeseen price deviations that may
materialise within the bounds shown in Fig. 3. Thus, it is more
favourable to offset the demand needs of the EVCSs using the ESS
to discharge in B2S, compared to selling energy back to the grid in
B2G mode. Since B2S is highly-favoured with respect to the set
with a single scenario, i.e. IS| = 1, the operating cost is increased
because once the demand materialises, the single demand scenario
cannot capture the volatile demand variations thus requiring
additional energy purchases.

On the other hand, the cases with IS| > 1 and I" > 0 outperform
the deterministic case. This shows that both the demand and price
uncertainty should be properly characterised in order to obtain the
minimum operating cost. In addition, from Fig. 4, some
combinations outperform others, e.g. IS =10,'=72 and
ISI =25, =72. Thus, the price uncertainty parameter I' =72
yields the lowest overall cost, because it balances the DA schedule
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cost with the RT cost of the realisation of uncertainty. The major
difference, however, between these two cases is the number of
considered scenarios, i.e. 10 compared to 25 scenarios. In terms of
computational burden of stochastic optimisation, as the number of
scenarios increases, larger computational times are required to
obtain the optimal solution [29]. An interesting feature is the
saturation point at which larger number of scenarios does not yield
substantial cost savings. This is shown in Fig. 5, where the average
normalised costs over all MC trials are shown against the number
of stochastic scenarios IS| for different values of I'. In addition, the
computation times for I' = 72 over a select number of stochastic
scenarios are shown in Table 1. As expected, the average cost
experiences a significant decrease from a single scenario to five
scenarios. If I" = 72, there are clear cost savings between 10 and 25
scenarios (Fig. 4). However, the computational time increases from
34.3 to 806 s. This increase in computational time still keeps the
problem tractable for market operations. On the other hand,
moving from 25 to 50 scenarios, the cost savings are minimal but
the computational time increases drastically to 4486 s.

The combination of the number of scenarios, IS| = 25, and the
RO parameter, I = 72, yields a balance between the least operating
cost over all MC trials and computational burden. This
combination is used throughout the remainder of the test case.
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4.2 Battery degradation effects

As the ESS is used, it undergoes cycle-life degradation which can
be translated into cost, as shown in (4a) and (5a). The ESS price,
normalised on a per-kWh basis, is varied from 800 to 300 $/kWh to
study the effect on the aggregator's G2B, B2S, and B2G actions.
The degradation model, as shown in (4a), is linear and represented
by slopes m = —[0.0017,0.0006]. The lower slope is the
approximation of the current technology [33], and the higher slope
indicates technological life cycle improvement.

The aggregator's daily total energy scheduled as a function of
the ESS price is shown in Fig. 6 for G2B, B2S, and B2G services.
Fig. 6a shows the deterministic case, i.e. IS| = 1,I" = 0, whereas
Fig. 6b considers uncertainty with the best estimates. In both cases,
as the ESS price decreases, the amount of energy scheduled for all
operating modes monotonically increases because the potential
revenue outweighs the degradation costs. As for the specific
modes, selling energy back to the grid in B2G mode is
unfavourable when uncertainty is considered. For B2G to occur
profitably, the aggregator must purchase energy in the low-price
periods to charge the ESS (G2B) so it can sell back to the grid by
discharging in the high-price periods. However, the uncertainty in
market prices renders the arbitrage revenue to be lower than
expected and thus as a result, less B2G is scheduled.
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On the other hand, when considering uncertainty management
in Fig. 6b, the aggregator decreases B2G and increases both G2B
and B2S for all battery prices. This happens because, by scheduling
B2S, the aggregator offsets the need to purchase energy from the
grid (G2S) exactly in periods when the EVCSs require it. Instead,
the aggregator uses the energy purchased during low-price periods
and stored in the ESS to discharge and offset the EVCS
consumption (B2S). The aggregator uses the ESS as a method to
reduce economic risks in the electricity markets.

In order to compare the effect that different battery degradation
models have on the results, we compare the DoD-dependent
degradation model (5a)—(5h) with the basic linear degradation
model (4a)—(4d). The DoD-dependent model causes the same
degradation effects when discharging the ESS up to 80% SoC as
the linear model, and progressively penalises further discharging.
Fig. 7 shows the objective function value obtained by models (4a)—
(4d) and (5a)—(5h) for different values of initial and final SoCs.
Due to lower penalisation of ESS discharging, the linear model
results in lower objective function values. Since the DoD-
dependent model aggressively penalises deep discharges, the initial
SoC has a significant role in its objective function value, favouring
high initial SoC. This is further elaborated in Fig. 8, which shows
ESS SoC for (Fig. 8a) 90% and (Fig. 8b) 20% values of the initial
SoC. When starting the day at high SoC, the linear model tends to
perform deep discharges of the ESS, while the DoD-dependent
model keeps the SoC at high levels not to incur high degradation
costs. The DoD-dependent model performs two full cycles, but
these cycles are much shallower than in the linear model. Similarly,
when starting the day at low SoC, the linear model performs two
full charging/discharging cycles, while the DoD-dependent model
keeps the SoC at low levels, as otherwise, it would incur high
degradation cost when discharging the ESS.

4.3 DA schedules

The aggregator determines its bidding/offering schedule in the DA
as shown in Fig. 9 for the deterministic case, and in Fig. 10 for the
case considering uncertainty with the best uncertainty parameter
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estimates. The net energy purchases p™¥ with and without the ESS,

the power sold pi!, and DA market prices are shown in the

figures. The net purchases with the ESS are equivalent to

PP = pP® + p® — E[pP:S], whereas without the ESS it is

equivalent to p™¥ = p9%. Also, pi*!' = pP?Y in both cases. If in any

period, the pP™ with ESS is greater than p®* without ESS, then the
ESS is performing in G2B and thus additional purchases are made.
On the other hand, if the opposite is true (less than), then B2S is
occurring which reduces purchases in the market (i.e. offsets G2S).

In the deterministic case (ISI =1,I'=0), the aggregator
exploits the low-price periods (0300-0430, and 1415-1545 h) by
scheduling purchases in the form of G2B (p™ with ESS in red is
larger in these periods). During the high-price periods (0715-0845,
and 1930-2100 h), the aggregator discharges the ESS to obtain

revenue from the market (p™¥ with ESS in red is lower in these

periods). The discharging, however, is split between B2G (pil")

with 526.3 kWh and B2S with 1074 kWh total. The total B2S
energy is greater than B2G because of the demand needs of the
EVCS, as shown in Fig. 2¢, correlate with the high-price regions.
Thus, it is economical to discharge, while incurring degradation
costs, to offset the EVCSs consumption in B2S and thus
consequently reduce purchases directly from the market in G2S.
Furthermore, B2G is only exploited when the potential revenue
that can be obtained by selling in the market outweighs both the
degradation cost and the potential benefit of performing in the B2S
mode to offset G28S. This effect can be seen in Fig. 9 where B2G
(P is scheduled to be sold during the high-price periods but not
during the peaks because it is more economical to perform B2S due
to correlation with EVCS demand.

In Fig. 10, the DA schedule is shown considering the best
estimates of uncertainty management, ie. IS| =25, =72. As
compared to the deterministic case, G2B is spanned across more
time periods (i.e. p?* with ESS is larger). This occurs because the

RO approach makes the aggregator hedge against the worst case of
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Table 2 Yearly cost/benefit analysis

Costs, $ Benefit, $ Total, $

G2S G2B ES deg. B2S/B2G
(1) DAM 311,092 — — — 311,092
(2) DAM + ESS 263,771 27,185 3627 47,321 247,262

an unforeseen increase in market prices. As an example, in Fig. 9,
the lowest-price period is 0315 h, and the maximum power of 500
kW is scheduled by the aggregator. However, potential uncertainty
exists in the estimate of the market price, and thus the aggregator is
risk-averse by scheduling 212 kW in that time period as shown in
Fig. 10.

When considering uncertainty (Fig. 10), the aggregator does not
schedule any B2G (p{*!' = 0 in all periods). Instead, it increases the
average B2S to 2161 kWh compared to the 1074 kWh in the
deterministic case in Fig. 9. An example of this can be seen from

periods 1800 to 2330 h, where B2S is performed consistently (p?*Y

with ESS is lower). This occurs because in the worst case the
market prices may be higher than expected, and thus there might be
an adverse effect on the overall cost caused by excessive
purchasing in G2S mode from the market. In addition, since the
aggregator also considers multiple scenarios of demand that may
materialise, the B2S is scheduled as an average response across all
scenarios, as opposed to only a single scenario. Therefore, B2S is
not only increased significantly but also spread across multiple
time periods that correlate with the EVCS demand (see Fig. 2¢) to
offset G2S purchases.

4.4 Yearly cost/benefit analysis

The aggregator must obtain a monetary benefit when participating
in the electricity markets and scheduling the ESS. A yearly cost/
benefit analysis is performed in two cases: (1) DA market (DAM)
case where the aggregator schedules the aggregated EVCSs
without the ESS, and (2) DAM including the ESS. The results are
summarised in Table 2.

In case 1, the aggregator manages the EVCSs and participates
in the DAM, which incurs a cost of $311,092 which is solely based
on purchases from the market in G2S mode. Furthermore, if the

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 5, pp. 1127-1136
© The Institution of Engineering and Technology 2017

aggregator uses an ESS in conjunction with the market schedule, it
obtains revenue benefits of $47,321 by performing in B2S/B2G
mode. However, this introduces additional costs related to
purchasing energy in the markets in G2B mode and the respective
degradation costs when charging/discharging as shown in Table 2.
It can be seen with the inclusion of an ESS, the G2S costs are
reduced from $311,029 to $263,771 because now the ESS can
perform G2B to store energy during low-price periods instead of
resorting to full G2S participation. By implementing an ESS, the
total costs are reduced from the DAM case by 20.5%. To calculate
the simple return on investment (ROI) of the ESS, the total cost
savings after its implementing are compared to its capital cost
investment. If the 1 MWh ESS investment is $300,000 ($300/
kWh), the yearly ROI is 21.3%, which means the investment will
be paid off in 4.7 years. More detailed ESS investment models are
available in [49, 50].

Furthermore, the ESS can generate further revenue from other
markets, e.g. ancillary services, if dual participation is considered.
The interested reader is encouraged to refer to [8] for further details
on dual participation strategies. Therefore, the presented
comparison of yearly revenue should be used as a basis for a
detailed cost/benefit analysis.

5 Conclusion

This paper presents a framework for an aggregator to manage an
ensemble of EV charging stations to participate in the DA
electricity markets while striving to minimise energy procurement
costs. To enable a further stream of benefits, the aggregator
operates its ESS to charge during the low-price periods in G2B
mode, and then to discharge to the grid to offset the stations'
consumption in B2S mode or to inject power to the grid directly in
B2G mode. However, since the charging/discharging of the ESS
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causes degradation, this effect is translated into an economic
operating cost and explicitly taken into consideration. To manage
uncertainty, a stochastic and robust optimisation approaches are
combined with the charging station power needs and market prices,
respectively. The utilisation of robust optimisation for market price
uncertainty allows fine-tuning the conservativeness of the solution
by varying the parameter I". On the other hand, weighed stochastic
scenarios capture the expected cost of operations over demand
scenarios that are estimated probabilistically. The benefits of this
framework are twofold. First, the volatile and high-power needs of
the charging stations are now procured in the DA market, and
second, the stations can now focus on their primary role to provide
services to EV customers as opposed to attempting to reduce
energy procurement costs.

Results show that the aggregator provides extensive benefits to
the charging stations by managing their energy procurement from
the wholesale market. The cost savings, however, are only
experienced if uncertainty is properly hedged against. The total
cost savings could be significant if both DA market participation
and uncertainty management are implemented with an ESS, as
opposed to a case in which an ESS is not available.

As for the tradeoff in cycling the ESS compared to the incurred
costs, B2S is preferred over B2G because B2S directly offsets
purchasing energy from the market to supply the stations.
However, such services are a function of the ESS price. At high
ESS prices, charging/discharging is decreased since the
degradation is too high to justify the potential revenue from market
arbitrage.
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